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1.0 INTRODUCTION
J1

In a previous report it was shown that a code based on the biharmonic

formulation of the Navier-Stokes equations with the corresponding Newtonlzed

difference equations solved by a direct band solver could be quite competi-

tive in situations where considerably more grid points are used in one

direction than inte other, such as flow in a long channel. The main

advantages of this approach are that it is straightforward and robust. Both
of these terms are subjective of course.

To justify the first we may summarize the approach as follows: From

derivative coefficients generated for the x and y variable grids we can

immediately write down the difference equations seeton - ) 3and it is then a
simple matter to write down the Newton equations. The coefficients are stored

by diagonals as required by the band solver and the righthand sides computed,

then the Newton corrections are obtained by calls to the band solver. Also

the uniformity of the approach used for introducing the boundary conditions in

section 4 simplifies the treatment of a wide variety of boundary conditions.

By robustness we mean less likely to fail in a wide variety of situations

where other methods, possibly more efficient but requiring careful tuning,

may be unable to produce a solution at all. In a situation where one has an

efficient well tuned method being applied to a familiar problem, it is dif-

ficult to tolerate the large storage requirements and possibly longer computer

times needed by this approach. But in situations where an unfamiliar and

awkward problem has to be solved quickly without too much tuning, robustness

can be a very welcome property. We are mainly thicking of the avoidance of

the all Reynolds number problem, which was demonstrated in reference 1. This

has advantages when a solution of some sort is required for very large Reynolds
numbers, and also when a solution is required for a moderate Reynolds number

on a coarse grid, for example, when using h2-extrapolation.

As discussed in reference 1, the main drawback of the approach is the

magnitude of the storage requirements. Although this could be overcome by

making use of direct-access storage devices, it was felt that other means

of reducing the storage requirements should be explored first, especially if

they may lead to a reduction in computing time as well. The present report

documents progress on this in four main directions. Also in two appendices

1i
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tentative work is reported which carried out an alternative to the biharmonic

scheme.

The biharmonic code described in reference 1 was restricted to laminar

flows and uniform grids. The code for which improvements are being considered

is a more general version of that laminar code in which turbulence can be

taken into account by using an eddy viscosity. The differential equations

for this form of the stream function equation are derived in section 2.

With regard to the improvements to this code, we first consider the

introduction of variable grids in the x and y directions. For this we need

formulas for higher derivatives up to the fourth in which the grid spacing is

not assumed to be uniform. These are derived in section 3. We also derive

the modifications to the coefficients in the Newton matrix that this general-

ization will engender in section 5. This improvement is fully implemented and

tested, and has been applied to the test problems considered in sections 8 and

9.

The second technique that we explore is to tailor the band solver algo-

rithm so as to take full advantage of the considerable number of zeros that

occur within the band of the matrix. The most obvious way of doing this is

to perform the LU deconposition by a block-elimination scheme. This is

considered in section 6, where the formulas for the forward and backward

sweeps are derived. Experiments with related ADI schemes are described in

Appendices A and B.

A third technique that could be used to introduce some flexibility as well

as to reduce storage requirements and/or computer time is to divide the flow

region into subregions and use the direct LU decomposition procedure on each of

the smaller subregions. Storage requirements for the decomposed matrix for

the smaller subregions will be much less at the expense of an iterative pro-

cedure to couple the regions together. If the number of subregions is fairly

small, this outer iteration should converge quickly and, since the inner iter-

ations for the subregions should be much faster, it may be possible to reduce

computer time as well if the accuracy aimed at is not too great. A simple

scheme for linking regions is described in section -7, but there is a potential

here for more sophisticated schemes in which one could allow different grid

structures in different regions, thus allowing one to take account of flow

2
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structure in a more realistic way. This could be particularly advantageous

for large Reynolds numbers. The implementation of a simple version of this

technique is currently being considered in order to test the effectiveness

of the basic philosophy.

These first three techniques are quite general in that they can be used

for whatever problem we are considering. We now restrict attention to channel

flows and, in particular, the sudden expansion configuration. For large

Reynolds numbers, we may neglect the upstream influence in the entrance channel

and assume that the flow is fully developed right up to the entrance. Thus we

may take the entrance conditions in the expanded channel as a parabolic profile

over the middle section and no slip over the remainder. We may accommodate

the rapid changes from these upstream conditions by taking a fine x grid close

to the entrance. We may also choose a fine y grid near the walls to take

account of the boundary layers there. This means that we will have a fine grid

in both directions in the corners, which should take care of any problems in

the corners. The chief remaining problem area is the slow approach to fully

developed conditions far downstream. This can be dealt with to some extent

by choosing an expanding x grid at large distances from the entrance region.

However, the analysis of perturbations from fully developed conditions due to

Wilson shows that the decay, although exponential, can be very slow for large

Reynolds number. Thus it seems very worthwhile to make use of the asymptotic

relations derived by Wilson. This is congidered in section 8. We also

compare its effectiveness with a simpler downstream condition, which we call

the boundary-layer condition. This may be as effective for large Reynolds

numbers and would be especially useful for turbulent flows since we do not

have to know the fully-developed profile. Results for turbulent, two-

dimensional plane channel flow are presented and discussed in section 9.

3
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2.0 EQUATION FOR STREAM FUNCTION. INCORPORATION OF TURBULENCE MODEL.

The turbulent Navier-Stokes equations read

au au_ = 2p+ 1 axx + -u 2) -lv
STX + v y 57 ay -x(u )-ax -- r'v')

u Ly +x V 2, I 1arX 1 - Y 2 7v)- (7
ax ay P p ax P y ax ay

Since Txx = 2p(au/ax), Ty= p(au/ay) +t,(av/ax), Tyy = 2p(av/ay), these

can be written

uu + v -- = .. . ]P Ljv-u-W + L-[~u+ a)- 771
ax ay p ax ax ax YL ay ax

(2.2)

u v + vLV= 1 2Rp+ a I (2-o + V 0 +- v 2- - 7
ax ay pay ax ay ax ay ay

Making the assumption that the Reynolds stresses can be modelled by an eddy-

viscosity approach, we write

2v L- -u - = 2(v + cm) L-, V (L+ Lx) -(- -r" (V + Cm)(-+ Lv)

ax m ax' ay ax maBY ax

2v g = 2(v + c v (.
a -M ay (2.3)

Then if

b = (1 + em), where em = em/ (2.4)

and we introduce nondimensional variables, we obtain

+ u _= + a (2b 2u 1 a b u + v
ax ay ax WaX ax W y By ax(2.5)

(2.5)

ax By ay Rax ay I + K -(2b a y vay

Eliminating the pressure, we obtain

L(Ou avi l 2[ 2b(RU - 3V)l. +*(a a [bau + av)1
ax ay a ay ay] x axay ax BY y a[ y ax

4
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which in terms of the nondimensional stream function f reads

f 2 af -af 2 af = 1r2[baf a 2 [b 23f(26
-Y xT yR5z 2~ 2* (2.6)-7---v baf a2  [ ax 1

Differentiating out we obtain

4(bf Y)x = 4bf y+ 4b xf x + 4b f x + 4b XYf

[b(fy - fxx)]Y = b (fy - fxx)Y + 2b (f yy- fX)y 4 byy(f yy- f )x
-bfyy - x~ xx = b~ yy -fxxy y x -2 -yy + x fyyX - x( yy -fxx

-[b f -f )lf =-1b(f - + 2 f + f fy ) b f -bvfY +)byx
yy xx xx byy -xxxx- xyy xxx xxyy x

Thus finally the "turbulent" stream-function equation reads

fyv2f f 2 f ELIvf + 2(bvf+ bvIy)+ (b - bx)(fy - fx)yx x y R xx y y x y x

+ 4b f J(2.7)
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3.0 DIFFERENCE FORMULATION WITH VARIABLE GRID

We set up a rectangular grid covering the basic rectangle Xmin < X < Xmax ,

Ymin Y . Ymax with M grid lines in the x-direction and N in the

y-direction. Actually we also store two exterior x and y grid values at

each end because we need them in computing coefficients for derivatives

actually on the boundaries. The grid spacing in each direction may be

non-iniform.

Since the stream function equation involves drivatives of up to the fourth

order, we require formulas for higher derivatives at the grid points of

a grid with nonuniform spacing. We restrict attention to the x grid

and indicate only briefly the modifications in notation needed to transform

to the y grid. We can represent to second-order accuracy the 1st and 2nd

derivatives in terms of three neighboring function values by locally fitting

a quadratic. Thus we find that

fl: - _hihi_.] f-' h-h fi + /hi+hi 1  fi+l- f"'fi) + ".

h jh1 +h1 i- hihiI [Ill]-
(3.1)

f 2/h- 1  1f-i[. h1Ch/i] f'll[hi hi~ l  f i-I _-h~il +rhihi_ f i+l 3--- (i .
= ~~~[;~ [_1h .j 

(hxiiJ)1 L il

where hi = Xi+l-X i. From the error terms we see that the first formula is

clearly second order and so is the second if the rate of change of grid spacing

with x is of order unity.

For the 3rd and 4th derivatives we need to fit a quartic locally, so these

formulas will involve five neighboring function values f1-2, fi-l' fig fi+l'

fi1+21 It will be convenient to adopt immediately a notation that can be

transcribed directly into the Fortran code, so we write

f = a2 (1)fi-I + a3(I)fi + a4(i)fi+l

f;" = c2(1)fi-1 + c3 (1)fi + c4(1)fi+l (3.2)

f1 " P1(1 1)fi 2 + P2(1)fi-I + P3(i)fi + P4(i)fi+ I + P5(i)fi+2
f'- rl (1)fi-2 + r2 (1)fi-I + r3 (1)fi + r4 (1)fi+l + r,(i)fi+2

6



where the coefficient notation bk(i), dk(i), qk(i), sk(i) has been reserved

for the corresponding coefficients for derivatives in the y direction.

Formulas for the ak(i) and ck(i) have been given above and can easily

be derived from Taylor expansions. However, for the higher derivatives the

algebra is more complicated and it is convenient to work more systematically in

terms of divided differences. Thus Newton's interpolating quartic reads

f(x) : A0 + A1(x-x1 ) + A2(x-xl)(x-x2) + '.. + A4 (x-xl)... (x-x4) (3.3)

where we have for convenience taken i = 3; a shift to the general local grid

point can easily be made whenever required. The coefficients occurring here

are the divided differences [2]

An= '(x - xk)] f(x.) (3.4)
j=l [Lk=l j

ktj

To derive the higher derivative formulas we write

f(x) = Ao0 + A(X-xl) + A2[x
2 - (xl+x 2)x + xlx 2 ) + A3 [x - (xl+X 2+x3)x

2 +

+ A4[x
4 

- (xl+x 2+x3+X4)X
3 +

Then

f''(x) = 6A3 + 6A4 (4x-xl-x 2-x3-x4), f""(x) = 24A4,

and for the values at the "central" grid point x3 we obtain

f.."(x3)= 6[A3 + A4(3x3-x1-x2-x4 )]

(3.5)

f""(x3) = 24A4

Thus the coefficients rk( 3) are immediate from the formulas for A
5

rk( 3) = 24 IT (xk-xj)-l (3.6)

j-I
j~k
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and the P()can be obtained from them by
4

()= 6 1T (xk-)r (3) for k =1, 2, 3, 4
j ~ + 3x, ~ 2_x4)rk(

j~k

and finally

P5(3) - (3x3-x - 2 x)r (3).

These formulas for the Pk()can be summarized more conveniently as

k (x (+ xk)rk(3), k = 1, 2, ... , 5, (3.7)

where

x = 3x3 -xi - X2 -X 4 -X 5 ' (3.8)

These coefficients and the corresponding ones for the y grid are assumed

to be pre-calculated and stored for each grid line. To obtain the difference

equations for the grid stream function Fi j we first write down the form~ulas

centered on the grid point (i,j) for the various derivatives and cross

derivatives that occur, omitting for simplicity the i or j index associ-
ated with the derivative coefficients - for ak2 ck' Pk , r k this will always

be i and for bk9 dk, qk sk it will always be j:

fxxxx = 1 Fi-2,j + 2 Fi-i,j I r 3 F1  , + r 4 Fi+ 1  + r 5 Fi42,j

f xxyy = c 2d2Fi1 ,j- 1 + c2 d3 F~ i-,j + c2d4 F~ i-l~~ + -. + c4d4Fi+1 ,j+l

fyyyy = l 1Fi J-2 +s2Fij-1+ s3 F i '+s4 F i,j+l + s5 F ,j+2

xxx PIlFi-2,j ' 2 Fi-1 ,j + 3 Fi,j + 4 Fi+l,j + 5 F +2,j

f xxy = C 2b 2F i... -1 + c2 b 3F1  , + c2 b 4 Fi..j+l + + c 4b 4F1 - i,p~

oy = a2d2 Fi,2j + a2d3 Fi,j 2 4 Fi-,j+l + adF+,~

fyyy ='l ij-2 + q2 Fi~j-_I q3 i,j q4 Fi,j+1 + q 5 Fij+2  (3.9)

8
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fxx c 2Fi-lj + c3 Fi J + c4 Fi+l 1 j

fyy =2 Fi,j-1 + d3Fi,j + d4Fi,j+l

fx =b 2 Fi-l,j + a3Fi j + a4Fi+l j

f y b b2Fij- + b3Fi j + b 4 Fi,j+l

Corresponding formulas can be written down for the derivatives of the eddy

viscosity b which occur in the stream function equation, namely bx, byy,

bx, by*

If we divide through by the eddy viscosity, the stream function equation

reads

4 2b - Rf 2 2b+ + Rf V2fy b b - b f
xb b x b xy (f yy

which can be written for convenience in deriving the Newton equations as

E = 0 (3.10)

where

fxxxx xxyy fyyyy + A(fxxx + yy+ B(fxxy + yyy+ Cfxy

+ D(fxx - fyy) (3.11)

and 2b - Rf 2b + Rf 4b b -bA b'F- B = 9 C = -L D bx _ bx (3.12)

The nonlinear difference equations are obtained by replacing the f derivatives

here by the variable grid formulas derived above for each interior grid point

and adding boundary condition equations; see next section.

9



T

4.0 BOUNDARY CONDITIONS

We need to specify two boundary conditions on each of the four sides.

These usually involve f and its normal derivatives fn or fnn and may

be linear or nonlinear. Examples of typical linear boundary conditions are the

following. Along an inlet boundary we usually specify u and v, i.e. f

and its normal derivative. We also specify u and v on a fixed wall when

the flow is lamina,. Along a line of symmetry we can specify f constant and

zero second normal derivative. On a downstream boundary several pairs of

boundary conditions can be used, which represent the approach to fully

developed conditions with varying degrees of effectiveness. Examples of linear

ones are fn = fnn = 0, which essentially says that f does not vary with

the normal coordinate n, and fnn = fnnn = 0, which we call the boundary-
layer condition. A more sophisticated downstream condition is that the approach

to the downstream profile is exponential (see Wilson, 1969, for the laminar

case). This leads to an example of a nonlinear condition if we do not know

the decay rate, as discussed below. Another example of a nonlinear condition is

the law-of-the-wall condition, which may be used to replace the fn = 0 con-

dition on a fixed wall. This will be discussed further in section 9 where

specific turbulent problems are treated.

The main point we wish to make about the above list of pairs of boundary

conditions is that they can all be represented in the interests of uniformity

as a pair of the form

fo = q(flf 2), f = r(f29f3 ) (4.1)

where the subscripts count grid lines inwards across the boundary with the

boundary itself characterized by the subscript 1. Thus f0  denotes the

fictitious exterior value which is not actually stored. The functions q and

r may be linear or nonlinear. In either case their partial derivatives, which

will be needed in the Newton linearization, will be denoted by

ar b a c -7,r (4.2)
31 3

Thus, for example, the linearized version of the second condition would read

f- caf 2 - d6f3 = r(f2 'f3) - fl (4.3)

10



This form is, in fact, used directly in the next section, whereas the first

condition is used essentially to substitute for the unstored exterior values.

For incorporation in the system of algebraic equations, these conditions

have to be particularized for each of the four sides, which we do by attaching

a superscript N, S, E, W corresponding to the North, South, East or West

side. Also they have to be written in terms of the local grid stream function

values F i j , where i = I or M along the South or North side and j = 1

or N along the West or East side, respectively. Since the q, a, b, r, c, d

may vary along the sides, they are all, in the interests of uniformity, stored

as one-dimensional arrays. As an example, suppose the downstream condition

fnn : fnnn = 0 is to be imposed on the North side. The first condition fnn =0

can be represented directly by using the variable grid derivative coefficients

corresponding to the grid line j = N. The second condition says essentially

that the second derivative is not changing, so we can represent it by imposing

f = 0 also on the first interior grid line j = N-1. The pair of conditionsnn

therefore read

d2(N)Fi,N-I + d3(N)Fi,N + d4 (N)F i,N+l : 0

(4.4)

d2(N-I)Fi,N-2 + d3(N-I)Fi N-1 + d4 (N-l)FiN = 0

or in the notation of (4.1)

Fi,N+l = qN(Fi N' Fi,N-) '  Fi,N = rN(Fi,N-l' Fi,N-2) (4.5)

where

q N(F i,N' F i,N-1 ) = aN F i,N + bN Fi,N-1

N N N(4.6)r (F F F + d N

I= cNFi ,N- + dNFi,N-2

with

a N = -d3 (N)/d 4 (N), cN = -d3(N-l)/d4 (N-l)

bN = -d2 (N)/d 4 (N), dN = -d2(N-l)/d 4 (N-1) (4.7)

Details for the other conditions will be given where they actually arise.

111
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5.0 NEWTON MATRIX AND SOLUTION BY BAND SOLVER

Let F be the vector of MN unknown grid stream function values F..

i 1, ... , M, j = 1, ... , N, i.e. the interior values plus the boundary

values, but not including the exterior values. We obtain MN equations for

these unknowns by writing down the grid stream function equation for all the

interior grid points (MN - 2M - 2N + 4 equations) with exterior values

assumed to be expressed in terms of the Fij by means of the first boundary

condition along each side, adding 2(M - 2) + 2(N - 2) equations representing

the second boundary condition on each side and finally adding four equations

for the corners. The last are obtained by selecting the second boundary con-

dition from either of the two sides meeting at the corner. In our code we

optionally choose these sides to be the North and South sides.

Let a .(F), i = 1, ... , M, j = 1, ... , N be functions defined so that

the equations

ij (F) = 0, i = 1, ... , M, j = 1, ... , N (5.1)

represent the above MN equations. Then with Newtons method, if F does

not satisfy (5.1) accurately enough, it is corrected to F + k where

satisfies

a ¢i+ljjv -8ij

I + I v <2

the av being the partial derivatives of i with respect to the Fk that

it depends on. From (3.9), (3.11), (3.12) we find that with the abbreviations

gx = R(fxxx + fxyy )/b, gY = R(fxxy + fyyy )/b

we can write down Immediately

0: r + Ap1
a r 5 + Ap

ao_2: sl + Bqj

a2 :S5 + Ba50

12



L-: a2(Ad + Cb2) + c2 (2d2 + Bd2)

1: a4 (Ad2 + Cb2 ) + c4 (2d2 + Bd2 )

l-l: a2(Ad4 + Cb4 ) 
+ c2(2d4 

+ Bd4)

1i: a4 (Ad4 + Cd4) + c4 (2d4 + Bd4)

-l: a23(Ad 3 + gy) + c2(2d3 + Bd3 + D) + r2 + AP2  (5.2)

0 : a4(Ad 3 
+ Cb 3 +g)+c4(2d 3 

+ Bd 3 +D) +r 4 + A 4

o : b2(Bc3 
+ Ca3 -gx ) + d2(2c3 

+ Aa3 -) + s2 + Bq2

b4(Bc3 + Ca3 -g
) + d(2c3 

+ Aa, - D) + s4 + Bq4

ao a3(Ads + Cb3 + gy) + c3(2d3 + Bb3 + D) + r + AP3

-d 3D-b3gx + s3 + Bq3

2 o -2
When i = 2 or M-l or j = 2 or N-1, the o, 2' ao or

a-2  would multiply *'s corresponding to exterior values, so modifications

must be made to take into account the relevant first boundary conditions.

For example, if i = M-l and 3 < j < N-2, as in Fig. 1 the relevant first

boundary condition would be of the form

FM+1' j = qE(F Mj , FMlj)

with

EE bEaFML--,E = a Ej a, b_ E, 0

The derivatives of oij with respect to FM,j and FM_I, j  then becomes

0E E
ao(jjht a w ,j) and 0L(i J) + bM l j

2~ 0'2

13
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E

0

* *o

SL j=3

i~- 1 m i-m+l

0 0 0 0 0 0

Figure 1. A typical computational molecule at a point where an exterior
unstored grid value is used. The dotted lines indicate the
grid values connected by the two boundary equations (4.5).
Stored and unstored grid values in the calculation are indicated
by e and o.

14
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Thus a is not used in the matrix, but is used to modify a0 and a 0

Similar modifications must be made near the other boundaries. For points

neighboring both boundaries, two exterior values are involved so modifica-

tiors must be made for each; thus a0 will then be modified twice.

The Newton equations for the second boundary conditions are added as

appropriate and have the form, for example, of

0M,j - cEM-lj - dEM-2,j = rE(FM-l,j, FM-2,j) - FMj

when i = M.

There are various ways available for the solution of the linear system

formed by these MN equations. Several block elimination schemes can be

formulated and also iterative schemes, including those of ADI type. If one

wishes to take advantage of the chord method, i.e. the simplified Newton

method in which only the right-hand sides are updated at each iteration, a

scheme in which an LU decomposition is performed and stored would seem to be

preferable. Block elimination schemes can be designed to do this, but

because of its potentially greater stability, espeically for large Reynolds

numbers, we chose to explore first the practical application of a standard

band solver with partial pivoting for stability (this may be especially

important if we work entirely in IBM single precision).

The standard way of organizing the equations as a banded system is to

order the unknowns by rows, i.e. in the order 0l,l' ""' Oml 01,2' ...

The matrix elements for the system (5.2) then has the appearance shown in

Fig. 2. To avoid confusion the suffices attached to the a's are shown on

one row only, and the modifications to the a's due to the first boundary

conditions are only indicated by position. Thus those needing modification at

the West and East boundaries are shown with a bar, those at the North and South

by a hat, and those at both by a bar and a hat.

For use in the band solver the diagonals have to be stored as the columns

of a rectangular array D, say, so they are numbered from 1 to t4 = 4M+l.

The main diagonals of the other individual blocks also have salient locations,

which we therefore denote by ill X 2 3' so that other diagonals can be

15
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referred to them as indicated in a typical row in Fig. 2. An equation count k

is also shown in relation to the successive blocks, together with the right-

hand sides.

Since the coefficients ciV are typically of order (grid size) -4, they

are much larger than the coefficients in the boundary equations. The solver

therefore interchanges them in pivoting for size, which causes loss of

accuracy. Strictly we should scale all the equations so that they are all

fairly uniform. However, we find that the natural scaling of the stream

function equations is adequate provided we scale up the boundary equations

sufficiently so that they dominate and are not interchanged.

A discussion of storage estimates and operation counts, as well as

iteration strategies was given in reference 1 and need not be repeated here,

apart from specific details given in the examples.

17
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6.0 QUIN-BLOCK-DIAGONAL SOLVER

A suite of subroutines has been written and tested for the LU decompo-

sition and solution of the quin-block-diagonal system arising in the Newton

iteration scheme. The system has the form

C1 Di El CL1 el r1
1 0 rB2 2 D2E2 2 B2 C2L .

A. B. C. D E. = A B'~ C.Aj j cj j " i j j-
A B C D A' B' CL

A B C A B' CL rn nn tn n n n xn. rn

CU Di El'

2 22 2Q

CU D' E'
CU D' .
CU

Un @n n

where the blocks are m x m square matrices. Here we have chosen the safer

form of decomposition in which the factors are exactly triangular. The

diagonal blocks C. of the left-hand factor are unit lower triangular.

The recurrence relations for the LU decomposition used in subroutine

LUBL05 read

1. A' CU_  = A (3 < j < n)j jB 2 j

2. = BB -CA D_ (2 <_ _n)

3. CL C = P. -B D -At E_ 2 )  (I <j < n)

4. CL D = Pj(D. - B' E_ l ) (I < j < n-i)

5. CL E = P. E (I <j <n-2)

18
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wh'?re the P. are permutation matrices introduced by the interchanges in

the LU decomposition of Cj.

A subroutine SP has been written for subtracting the products involved

in (2), (3), (4), a subroutine TS for the transposed forward substitutions

in (1) and (2), and a subroutine FS for the forward substitutions in (4) and

(5).

A subroutine SOBLE uses the decomposition to solve the block equations.

The recurrence relations involved in the foward and backward substitutions

read

Forward: C L = Plr,, CL 2  P2 (r2 -B 2Q 1 )

6. C j = P.(r -B B.. - 'e.) (3 < j < n)
J% j ,j i j I-l

Backward: Cn n' C D'nn Nnn n-l %In n- I nnD° ,

7. C j =o - Do - E'e 0 < j <n-2)
SJ - j,,j + 1 j-.j+2(1< n2

A vector back substitution subroutine BS was written for solving the equa-

tion in the backward sweep. Also it turned out to be convenient to write a

vector subroutine S2TV for subtracting off the two transformed vectors

which occur in (6) and (7).

The above subroutines have all been tested. Some significant loss in

accuracy was observed in one test, but this is believed to be due to the

particular test matrix chosen being somewhat ill-conditioned. Moderate loss

in accuracy was also observed in another test where the matrix was of bihar-

monic form, so it seems that further investigation is needed before the use

of a block solver is implemented in the present code. Also, in the present

form the saving in storage is not substantial. Further savings could be made

if a more sophisticated storage scheme was adopted, but it might be simpler

to try the alternative pseudo-LU decomposition.

19
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7.0 ITERATION BETWEEN SUB-REGIONS

Another scheme for reducing the storage requirements is to divide the

flow region into sub-regions and use the direct LU decomposition procedure

on each sub-region in turn. Once the local decomposition has been performed,

it would seem worthwhile to iterate the simplified Newton (chord) procedure

several times before proceeding to the next sub-region. The problem of connecting

one region to the next can be solved very simply in the case when the grid

structure is the same for all sub-regions: we merely use the band matrix for the

whole region to provide the coefficients for the connecting relations between

values on either side of the dividing line. Of course the remaining band

sub-matrices provide the band matrices for each sub-region. This is illustrated

in Figure 3 for the case of three sub-regions. The scheme would apply for

any very long band matrix, but in the present biharmonic context each division

would normally be chosen to correspond to the end of a grid line and the overlap

vectors Yk' Zk would then correspond to the two neighboring grid lines on the

other side of the boundary. The iterative procedure we would use would be

essentially a block Gauss-Seidel, which for the case represented in the diagram

would be written

AlX(I) = r - ClX t '1)

A2 x = r 2 (- Cxi- 1 ) - B (I)

2I 2 r 2 9x 2x1

A I) r 3 - BxI)
A~3  3 B~2

where I is the iteration count and x(i1) , x 0 ' l ) are known from the

previous iteration. Note that because of the structure of the matrices Bk, Ck

only the overlap parts of the vectors x(-1) are involved. If necessary,

an acceleration parameter could be introduced to accelerate convergence.

Various refinements and extensions to this basic scheme can be envisaged.

For example, if the sub-regions are chosen so that within each the number of

unknowns in one direction is more than in the other they should be ordered

so that the M in the estimate 8M3N for the LU operation count should be

less than N. A generalization that would require rather more effort to

implement but which should ultimately be very effective is to reformulate the

20
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matching conditions at the sub-region boundaries in such a way that different grid

structures could be used in each sub-region. This would involve interpolation

and perhaps reformulation in terms of boundary derivatives, although one could

probably get away with fairly minor modifications to the present variable grid

code if one restricted attention to the situation where the boundary between

regions is entirely in the fluid, i.e. no part of it also has boundary condi-

tions specified. As a fairly typical example we may consider the expanding

channel of Figure 4, where the flow region is divided into three sub-regiois

I, II, III. The simple situation envisaged exists for the boundary between

II and III and also for that between I and II looked at from inside I, but

not from inside II.

We therefore consider first solving for region III assuming values in II

are known from a previous iteration. We imagine the III-grid extended into

region II for two y-grid lines. The x-grid lines do not match so we interpolate

to obtain known values on the two grid lines outside of III. Since these are

known, the Newton corrections for these values are all zero, so we can merely

truncate the Newton matrix at the appropriate point and not complete it with

boundary-condition equations and modifications. The code changes required for

this is relatively straiahtforward. so we are currently considerina implementinn

them in order to assess the effectiveness of the basic philosophy.

i-I I I I Ill

Figure 4. Expanding channel divided into subregions.
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It is, of course, entirely feasible to deal with the more complicated

situation, but since more sophisticated code changes would be required, it

seems reasonable to hold this extension in abeyance for the immediate future,

pending the above assessment.
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8.0 LAMINAR FLOW APPLICATIONS

We first tested the variable grid code on the idealized channel flow prob-

lem with uniform parallel inlet velocity already calculated by the uniform grid

code1 . We omit details of the application of the code since only minor modifi-

cations were needed from those given in reference 1. It was clear that the

singularities at the corner could be dealt with more satisfactorily by concen-

trating grid points near them, but since this situation is somewhat idealized,

it was decided not to put too much effort into producing accurate results over

a large Reynolds number range for this problem, but to transfer attention to the

more realistic problem of the sudden expansion channel. Suffice it to say that

some experimentation was performed on choice of grid structure and that the

original choice of geometric grid with step hi = h1ki-l (k > 1) was ultimately

abandoned in favor of a quartic grid in which the step varied cubically, the

maximum and minimum of the cubic being at the boundaries, the center of the

channel and the wall for the transverse grid and at the last station and the

inlet for the downstream grid. This meant that for the transverse grid the step

became large but fairly uniform far downstream, which is appropriate for the

exponential decay.

We turn now to the sudden expansion case and again take x across the

channel and y along the channel as in Fig. 5 with x = 0 on the wall and

x = 1/2 on the centerline. We assume a fully developed parabolic profile at

the inlet over a central opening at y = 0. This starts at x = a, where we

have taken a = 1/3 but it can be varied. The choice of a = 1/3 was made

because accurate experimental results are available4 . The Reynolds number

quoted for these results was Re = 56 and was based on the maximum velocity

of a profile slightly upstream of the inlet. Assuming that this was a fully-

developed profile, the corresponding Reynolds number in our notation would be

R = 41.3. The boundary conditions on y - 0 are
U

f = F (X), fy = 0

where

0 if 0 < x < a

Fo(x) = (3 x - ax - a < 1/2

24
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y f : fyy 0 or f = f v= 0 or exponential

Ymaxapproach

f= 0 f = -1/2

f 0 = 0
: 0xx

x
0 f Fo(x), a f = 0 1/2

Figure 5. Boundary conditions for rapid expansion channel

The other boundary conditions are as in Fig. 5, where the several alternatives

that we have used for the downstream boundary condition are shown. If the

variable grid derivative coefficients are used, the table of coefficients for

the boundary conditions becomes, for example;

Side q a b r c d

W() a4(1) 0 0 0

c3(M) c2(M) 1

b3(1) b4(1)
orT " To 0 0

N qN d3(N) d2(N) rN d3 (N-l) d2 (N-1)

" 4 " T d d(N-1) d4(N-1)

25
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where qN and rN are given by (4.6), if we choose the downstream condition

fyy = fyyy = 0 as represented by (4.4). This condition we call the boundary-

layer condition since it implies that the streamwise second and third deriva-

tives of the streamise velocity are small near the downstream boundary. We

compare its affectiveness with that of the following nonlinear downstream con-

dition which models the exponential approach to the Poiseuille profile

investigated by Wilson3.

If we assume that the decay into the fully developed Poiseuille profile

f p(x) as y is exponential, so that we can write for the stream function

f(x,y)

f(x,y) f (x) + e -aY(x) (8.1)
p

it can be shown (Wilson 3) that a and O(x), which depend on R, satisfy an

equation similar to the Orr-Sommerfeld equation, and Wilson has obtained an

approximate formula for a when R is large. When R is not large enough,

so that we do not know a accurately, we can impose the asymptotic condition

(1) by using nonlinear boundary conditions obtained by eliminating a, as

shown in the last progress report. If yN is the last y-station considered

and we write

E N+l y N -f E2 = , G =f

N N-l 1I N-1 p N-1 _N-2 2 f N-2 p

the two nonlinear boundary conditions consistent with (1) read:

fN+l fp + (fN - fp)G1 ' fN = fp + (fN-1 - fp)G2

The Newtonized forms of these read

ON+l - aCN - b*N-1 = fp + (fN - fp)G1 - fN-1

N- cON-l - dON-2 = fp + (fN-1 - fp)G2 - fN

where

a (1 + El)Gl, b = -EIGl(fN - fp)/(fN-1 - fp)

c ( + E2 )G2 , d -E2G2(fN 1 - fp)/(fN-2 - fp)
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These nonlinear boundary conditions have now been implemented in the

biharmonic code and compared with simpler downstream boundary conditions for

the sudden expansion problem. The results in the table below show the decay

of the centerline velocity for a 21 x 31 grid with ymax = 3.0 and for the

same grid with ymax = 2.46, 1.94, 1.48 and 1.07, i.e. with the asymptotic

conditions imposed at j = 28, 25, 22 and 19 instead of j = 31. For the

nonlinear boundary conditions the fp (x) distribution used was the one

appropriate to the grid, i.e. it was obtained by solving fxxxx = 0 on the

given x grid. This is the approximation to the fully-developed profile that

one would expect the computed profiles to tend to as y -. For the simpler

downstream conditions we used f : f 0.
yy yyy

The comparison shows that for graphical accuracy it is quite adequate to

impose the nonlinear conditions at y = 1.48 instead of y = 3.0; thus comparing

values at x = 1.6 with those obtained for Xmax 3.0, we see that the non-

linear conditions give an error of 0.0085 whereas for the simpler condition the

error is about -0.046.

One may also observe from these results the rate at which the effect of

the choice of boundary condition decays upstream. For example, if either

condition is imposed at x = 1.48, the difference could hardly be detected to

graphical accuracy at x = 1.07.

Runs so far made on this problem have been mainly with R = 41.3 and have

started from an initial guess consisting of a linear interpolation between the

inlet conditions and the fully developed downstream profile. The iteration

strategy has normally been a maximum of 2 
Newtons followed by "Chords"

I

and the monitored iterative corrections printed out were, for the finest

grids considered so far (21 x 61), for example,

0.19, 0.34 x 10-1, -0.31 x 10-2, 0.64 x l0-3 , -0.72 x 1O
4 , 0.79 x l0

5

Thus here 2 Newtons + 4 Chords were required to achieve the required accuracy

of 1/2 x lO"4  in f, and this took about 0.98 minutes CPU time on the IBM 370.

The development of the longitudinal velocity profiles from the inlet condi-

tions to the downstream fully-developed profile is shown in Fig. 6 for the 21 x

31 grid in comparison with Durst et al. experimental data4 . For the present cal-

culation, the experimental data at the inlet was served as the initial profiles,
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which were far from the fully developed and of which the corresponding Reynolds

number in our notation was 37.3 instead of 41.3 for the corresponding fully-

developed inlet conditions. The agreement between the calculated and experimental

results is very good; a small discrepancy of the velocity at the centerline in the

inlet region could be caused by the inaccuracy in reading the experimental data,

particularly at the inlet which was plotted in a small-scale figure.

Centerline Velocities with Various Downstream Conditions (R = 41.3)

x exp BL exp BL exp BL exp BL

0.637 3.0856 3.0856 3.0857 3.0857 3.0857 3.0856 3.0857 3.0856

0.733 2.9283 2.9283 2.9284 2.9284 2.9284 2.9284 2.9284 2.9283

0.837 2.7667 2.7667 2.7667 2.7667 2.7668 2.7668 2.7668 2.7665

0.949 2.6046 2.6047 2.6047 2.6047 2.6047 2.6047 2.6048 2.6040

1.070 2.4465 2.4465 2.4464 2,4465 2.4465 2.4465 2.4468 2.4451

1.198 2.2963 2.2964 2.2963 2,2963 2.2964 2.2963 2.2973 2.2913

1.333 2.1576 2.1578 2.1577 2.1577 2.1578 2.1573 2.1600 2.1472

1.476 2.0333 2.0334 2.0334 2.0334 2.0334 2.0327 2.0407 1.9955

1.626 1.9248 1.9249 1.9249 1.2950 1.9252 1.9211

1.782 1.8327 1.8328 1.8328 1.8326 1.8331 1.8254

1.944 1.7564 1.7564 1.7564 1.7562 1.7585 1.7262

2.112 1.6946 1.6947 1.6947 1.6927

2.284 1.6458 1.6457 1.6457 1.6424

2.459 1.6079 1.6078 1.6082 1.5910

2.638 1.5790 1.5781

2.818 1.5574 1.5561

3.000 1.5414 1.5340
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0 0 o measured

0.0 0.5833 0.9167 1.250 1.751 3.417 x/D

0.0 0.5933 0.9167 1.250 1.751 3.00 calculated

u/us 1.0

-.9

.7

.5

.4

.3

.2

.1

-1 -.8 -.6 -.4-.2 0 .2 .4 .6

-.2

Figure 6. Computed laminar velocity profiles in a sudden expansion:
comparison with measurements of Durst et al. (1974).
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9.0 TURBULENT FLOW APPLICATIONS

Because of the rapid variation near the wall, we replace the no-slip condi-

tion at a suitably small distance from the wall. The law of the wall is the

well-known log law

u _u
S log (-l-y) + c (9.1)
u T K VT

where u =v1T w/p and K and c are appropriate constants. In the law-of-

the wall region 50v/u < y < 0.16 we have

au :u . 1 aBy t 1 or u = Ky - (9.2)

K Y y

So, eliminating u , we have

U = y au log KC au (9.3)

If all variables are nondimensionalized this becomes

u = y u log (CRy 2 a) (9.4)
ay y

Kcwhere a =e 
c = 3.3 and y > 50/R w , where Rw = u T/t. If we define the

function W by

W(t) = yt log (aRy2t) (9.5)

the law of the wall in terms of the stream function F reads

F = W(F yy) (9.6)

In terms of the variable grid difference formulation with y = Y(l) we have

b2f0 + b3fI + b4f2 = W(d2fo + d3fI + d4f2) (9.7)

If we wish to express fo in terms of f, and f2 ' as would be required to

express the boundary condition in the form (4.1), we use Newton's method again

and from an approximation T determine a better one by
0

b27o + b3fI + b4f2 - W(d21o + d3f1 + d4f2)
T0 b2 - d2W'(d 2io + d3fl + d4f2 )
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we re
W'(t) : y[log(Ry 2t) + 1]

We also need the derivatives af0/afI and afo/af2 . These are immediately

found by differentiating (9.7) to be

afo _ b3 - d3W' afo _ b4 - d4W'
af 0 b 3- d WI af0 b4 4(9.9)

S b2 -d 2 ' ' af2  2 - d2W

These provide the values for a and b in (4.2).

A sample of results obtained for developing two-dimensional, plane channel

flow is presented on Fig. 7. The Reynolds number corresponds to experimental
5results of Comte-Bellot and calculated results may be compared with measure-

ments at values of x/D from 20, where the measurements were used as initial

conditions for the calculations, to 59. The calculated results deviate from

measurements, particularly in the near-wall region, as the flow develops from

the initial condition and tends towards the measurements with further downstream

distance. The discrepancies are undoubtedly related to the specification of

zero cross-stream velocity, in conjunction with the law of the wall, at the

initial station. This leads to mass continuity not being initially satisfied

and some distance downstream is required before the consequences disappear.

This erroneous assumption can be removed with some effort but this was not done

here since the main purpose was to develop and evaluate numerical aspects of the

code.
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1.2 x/D

1. 1 59.0

1.0 - ........ .. 54.0

0.9 4.

0.8

0.7 3.

0.6 31.5

020.

0.20

0.2

PRESENT SOLUTION
0.2 0 EXPERIMENT, R D =2.4 x 105

0.2

0.2

0 0.1 0.2 0.3 0.4 0.5
x/D

Figure 7. Computed turbulent velocity profiles in a plane channel;
comp~arison with measurements of Comte-Bellot (1965).
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Appendix A

BIHARMONIC ADI

Conte (1958) has described an ADI technique for solving the steady

biharmonic equation with boundary condition corresponding to the bending of

a plate without clamped edges. If v 0 is replaced by difference equa-

tions in the form

(X + Y + Z)¢ = 0

where X replaces xxxx' YO replaces yyyy and ZO replaces 20xxyy

and the boundary conditions have been used to eliminate exterior 0 values,

then Conte's scheme can be written

= 0(k) _'k+l (XO + yO(k) + zP(k))

0(k+l) - k)kl(YO _ Yo(k)

where a k+1 is an iteration parameter which can be chosen to accelerate

convergence. Conte proves convergence and shows that a good choice of cyclic

values for a 20 x 20 grid is

ak = (0.2 )-k/ 16  (k = 1, 2, ..., 8)

We are interested in first normal derivative boundary conditions

(clamped edge) rather than 2nd normal derivative conditions (unclamped edge),

but the same scheme can be tried. However, no convergence results appear to

be available.

If we drop the k index and denote the new 0 by 0* and also introduce

a nonzero right-hand side, the above scheme can be written in a form suitable

for computation as

(I + QX)f = 0- c[(Y + Z) -r]

(I + cY)(O* - 0) -4

Each stage here requires sweeps involving the solution of a quin-diagonal

system. A subroutine QUISOL was written to solve a general quin-diagonal

system of the form

aj j_2 + b jo- + cj j + djcj+ I + eJ#J+ 2 = rj (J - l, ... , n)
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with aI 
= a2  b b 0, dn en = en_ 1 = 0. This was used to implement the

above scheme with a view to using it to solve approximately the Newton equa-

tions of section 2 with very little storage requirements. It was tested on

a 6 x 6 system whose right-hand sides were generated as the row sums of

the coefficients, so that the exact solution was known, namely i = 1.

Convergence was excellent and the exact solution obtained, but when the the

dimensions were increased to 11 x 11, convergence became very slow and

adjustment of the cyclic iteration parameter did not have much effect. The

kind of convergence that Conte predicted was not obtained at all, so we

conclude that the chane of boundary condition makes a vital diffprMnce,

and that some modification to the scheme would certainly be needed.
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APPENDIX B

BOX ADI SCHEME

The Box ADI scheme was originally proposed for dealing with the coupled

elliptic equations which occur in corner iu"n!ary layers. Since these reduce

essentially to the two-dimensional boundary-layer equations at large distances

from the corner the view was taKfI that it would be generally beneficial to

construct a scheme that would reducE to the familiar two-dimensional Box scheme

far away from the corner. A fully three-dimensional Box scheme has several

disadvantages, not least of which is the proliferation of dependent variables,

so we proceed as though a standard ADI scheme based on central differences was

intended then use the ordinary Box scheme for the boundary value problems that

have to be solved on each grid line. This means that slightly different differ-

ence approximations are being used in each direction, but they are all second

order so this should not matter too much; in fact there is one way in which it

may be an advantage, which is best explained after the details of the scheme

have been described.

We considered first a simple example to test the scheme, namely

Uxx + U + aux + buy + cu = f(x,y) + aut

where f(x,y) was chosen so that the equation had a given known solution and

appropriate boundary values were imposed as a rectangle. A grid which may be

nonuniform in each direction, is set up to cover the rectangle as in Fig. 3.

In the standard ADI scheme we first consider sweeps in the x direction and

determine u at t + kat to satisfy

u +au (1 C . au(lUxx +aux 2 c -)u = f(xy) -uyy -byy 2 At(

on each x grid line j = 2, ... , n-1, where u is the known field at the

previous time step t. We now sweep in the y-direction to solve for u

Uyy bUya x )u = f(xy) - - uux ( c +A)u (B2)

on each y-grid line i = 2, ... , n-1. We then take u as the updated field

for t + At. Since we are interested in the steady state, we repeat these

sweeps until convergence.
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In the standard ADI scheme we solve the boundary value problems associated

with (Bl) and (B2) by central differences and a tridiagonal solver, with

the right-hand side derivatives evaluated by central differences. In the Box

ADI scheme we solve them by the Box method and a SOLV2 subroutine, but still

evaluate the right-hand side derivatives by central differences. For (Bl), for

example, we introduce v = ux  and consider the first-order system

Ux (B3)

+ av + = f(x,y) u** bu*-(. +

where u**, u* are uxx, ux  evaluated by central differences.

If hi 
= x i+1 - xi, then the Box scheme approximations yield for i 2,

S(ui 1 ui ) -- (v i + v =1) 2 01hi -l+ 14 Vti-(84

a(B4)
(v. -Vi-) +a (vi + Vi-) + (c-- )(ui + uil) =h i-- li

where

1  [if(xl,y) + fx11 ~i w<u*+U ~ + u** b -. 1 L + La (u
i -IY ) -I

) (ui +  ui I

These equations, together with the boundary conditions, are solved either by a

block tri-diagonal solver or a band solver. We can overwrite the u on the u

provided we have stored temporarily the old u's needed to calculate the u**,

u* for the next grid line.

Having performed those calculations for each x grid line, i.e., j = 2,

n-1, we change to sweeping in the y-directlon. We can use v again, but

now for uy. The system we now solve along each x grid line is the same as

(B3) except that the subscript x becomes subscript y, a and b are inter-

changed and u**, U* now mean derivatives in the x-direction evaluated by

central differences. Further we interpret u as u and u and G. which

is natural anyway since u will have been overwritten. The Box equations for

the y-direction follow by similar interpretations and also changing i to j

and interpreting h as Yj+I-yr"

i3
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One might expect that, once the iterations had converged to a level cor-

responding to the differences between the two approximation schemes, the iter-

ative changes would not decrease further and that this level would therefore

give an indication of the truncation error; thus we would have an automatic

criterion for terminating the ADI iterations. However, on the simple examples

tested the iteration seemed to converge to normal working accuracy, approximately

six significant figures.

When the scheme was tried on the vorticity/stream-function formulation of

the Navier-Stokes equations, the situation was not so satisfactory. We now

have two coupled equations, of course, and moreover we have two boundary condi-

tions on one variable but none on the other, so the situation is somewhat

different. However, it was hoped that by solving the two qquations simultaneously

on each grid line by the Box method, the boundary condition problem would be

automatically dealt with.

If f is the stream function and q the vorticity, the equations read

fxx + fyy = q + ft

(B5)
l(qxx + qyy f yqx - fxqy + qt

where aft is a fictitious time-dependent term introduced to help convergence,

if necessary.

For the x-sweep equations we introduce g = fx and s = x' and the equa-

tions corresponding to (B3) then read

YX At 2t t

(B6)

sq (Rf-s q*0

- Rf) - 2R q + (Rq*)g 2R - q *

These are discretized by the Box scheme and solved by a block tri-diagonal

solver or a band solver in exactly the same way as before, and similarly for

the y-sweep equations. Note that we do not require initial guesses for g

and s because they do not occur as coefficients or in the right-hand side.
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Successive pairs of alternate sweeps using this scheme should gradually

update the f and q fields to the solutions of the steady-state equations.

In fact, this occurred, when the scheme was tried on the simple Poiseuille

flow with the initial guess taken to be the exact solution plus a perturbation

which was zero at the corners.

Now there is a slight difficulty at the corners. In the x-sweeps we

update the vorticity on the whole of each grid line for j = 2, ..., n-l.

Thus we obtain updated q values along the left- and right-hand boundaries,

but not at the corners. When we proceed to the y-sweeps, we update q along

the top and bottom boundaries, but not at the corners. Thus some other means

must be found for updating the corner vorticity values since they are needed to

evaluate, for example, the q** boundary values. We chose to update the value

of q at a corner by taking the average of the two values obtained by extrap-

olating quadratically along each of the adjacent sides. With this procedure

the iterations converged for the simple Poiseuille flow, even when the pertur-

bation from the exact solution was not zero at the corners. It was found that

the fictitious time derivative term in (B5) was not needed, so a was set to

zero.

When the scheme was applied to the channel inlet problem with a uniform

parallel entry velocity, no convergence could be obtained at all. Here the

initial guess chosen was fully developed flow everywhere except right at the

inlet, where the entry conditions were imposed. Because there are infinite

vorticity values at the corners in this case, it seems highly likely that it is

the corner problem that is affecting the rest of the solution. We hope to try

the scheme on a more realistic problem with infinite vorticity values as a part

of the future program.
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